دانلود مقاله ISI انگلیسی شماره 136260
ترجمه فارسی عنوان مقاله

برنامه ریزی بهینه بر اساس ریزپردازنده مبتنی بر ریزپردازنده انرژی هوشمند مبتنی بر انرژی تجدید پذیر

عنوان انگلیسی
Risk-based optimal scheduling of reconfigurable smart renewable energy based microgrids
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
136260 2018 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 101, October 2018, Pages 415-428

ترجمه کلمات کلیدی
تنظیمات میکرو گرید هوشمند قابل تنظیم، نسل سناریو، ضریب شتاب متغیر زمانبندی بهینه سازی ذرات ذرات، اندازه گیری خطر، ارزش شرطی در معرض خطر،
کلمات کلیدی انگلیسی
Reconfiguration; Reconfigurable smart microgrid; Scenario generation; Time-varying acceleration coefficients particle swarm optimization; Risk-measure; Conditional value-at risk;
پیش نمایش مقاله
پیش نمایش مقاله  برنامه ریزی بهینه بر اساس ریزپردازنده مبتنی بر ریزپردازنده انرژی هوشمند مبتنی بر انرژی تجدید پذیر

چکیده انگلیسی

Due to penetration of renewable energy resources and volatility of market price, scheduling of microgrid is associated with risk. Reconfigurable smart microgrids (RSMGs) are a new generation of microgrids which require further investigations. In this paper, a daily risk-based optimal scheduling of RSMG in presence of wind turbine for microgrid operator profit maximization is presented. As a reward scheme for further use of wind, the price of selling power is considered different and more than the price of purchasing power. The wind speed, price of selling and purchasing power are considered as uncertain parameters and scenario generation based on ARMA model is used for simulation. To find the best combination of microgrid switches in each hour, TVAC-PSO algorithm is used and new constraint called maximum number of optimal topology constraint is added to limit the number of changes in the structure. Moreover, a risk measure is based on condition value-at risk (CVaR) is formulated. The proposed method is implemented on 10 and 32-bus test RSMG. Numerical results show that by assessing the risk, the expected profit of optimal scheduling problem will be improved and RSMG can achieve the greater revenue by selling power to upstream network in a longer time.