دانلود مقاله ISI انگلیسی شماره 48611
ترجمه فارسی عنوان مقاله

روش استخراج ترکیبی در طراحی از مدل های امتیازدهی اعتباری

عنوان انگلیسی
Hybrid mining approach in the design of credit scoring models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48611 2005 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 28, Issue 4, May 2005, Pages 655–665

ترجمه کلمات کلیدی
داده کاوی - مدل امتیازدهی اعتباری - شبکه عصبی
کلمات کلیدی انگلیسی
Data mining; Credit scoring model; Clustering; Class-wise classification; Neural network
پیش نمایش مقاله
پیش نمایش مقاله  روش استخراج ترکیبی در طراحی از مدل های امتیازدهی اعتباری

چکیده انگلیسی

Unrepresentative data samples are likely to reduce the utility of data classifiers in practical application. This study presents a hybrid mining approach in the design of an effective credit scoring model, based on clustering and neural network techniques. We used clustering techniques to preprocess the input samples with the objective of indicating unrepresentative samples into isolated and inconsistent clusters, and used neural networks to construct the credit scoring model. The clustering stage involved a class-wise classification process. A self-organizing map clustering algorithm was used to automatically determine the number of clusters and the starting points of each cluster. Then, the K-means clustering algorithm was used to generate clusters of samples belonging to new classes and eliminate the unrepresentative samples from each class. In the neural network stage, samples with new class labels were used in the design of the credit scoring model. The proposed method demonstrates by two real world credit data sets that the hybrid mining approach can be used to build effective credit scoring models.