دانلود مقاله ISI انگلیسی شماره 48626
ترجمه فارسی عنوان مقاله

ریسک اعتبار مصرف کننده: برآورد احتمال فردی با استفاده از یادگیری ماشین

عنوان انگلیسی
Consumer credit risk: Individual probability estimates using machine learning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48626 2013 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 13, 1 October 2013, Pages 5125–5131

ترجمه کلمات کلیدی
برآورد احتمالات - جنگل های تصادفی - اعتبارسنجی - ماشین آلات احتمال - رگرسیون لجستیک - یادگیری ماشین
کلمات کلیدی انگلیسی
Probability estimation; Random forest; Credit scoring; Probability machines; Logistic regression; Machine learning
پیش نمایش مقاله
پیش نمایش مقاله  ریسک اعتبار مصرف کننده: برآورد احتمال فردی با استفاده از یادگیری ماشین

چکیده انگلیسی

Consumer credit scoring is often considered a classification task where clients receive either a good or a bad credit status. Default probabilities provide more detailed information about the creditworthiness of consumers, and they are usually estimated by logistic regression. Here, we present a general framework for estimating individual consumer credit risks by use of machine learning methods. Since a probability is an expected value, all nonparametric regression approaches which are consistent for the mean are consistent for the probability estimation problem. Among others, random forests (RF), k-nearest neighbors (kNN), and bagged k-nearest neighbors (bNN) belong to this class of consistent nonparametric regression approaches. We apply the machine learning methods and an optimized logistic regression to a large dataset of complete payment histories of short-termed installment credits. We demonstrate probability estimation in Random Jungle, an RF package written in C++ with a generalized framework for fast tree growing, probability estimation, and classification. We also describe an algorithm for tuning the terminal node size for probability estimation. We demonstrate that regression RF outperforms the optimized logistic regression model, kNN, and bNN on the test data of the short-term installment credits.