دانلود مقاله ISI انگلیسی شماره 48688
ترجمه فارسی عنوان مقاله

مدل ارزیابی ریسک اعتباری برای بانک های تجاری اردن: رویکرد امتیاز دهی عصبی

عنوان انگلیسی
Credit risk assessment model for Jordanian commercial banks: Neural scoring approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48688 2014 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Review of Development Finance, Volume 4, Issue 1, January–March 2014, Pages 20–28

ترجمه کلمات کلیدی
شبکه عصبی مصنوعی - اعتبارسنجی - رگرسیون لجستیک - ریسک اعتباری - بانک تجاری - اردن
کلمات کلیدی انگلیسی
C45; C52; C83Artificial neural network; Credit scoring; Logistic regression; Credit risk; Commercial bank; Jordan
پیش نمایش مقاله
پیش نمایش مقاله  مدل ارزیابی ریسک اعتباری برای بانک های تجاری اردن: رویکرد امتیاز دهی عصبی

چکیده انگلیسی

Despite the increase in the number of non-performing loans and competition in the banking market, most of the Jordanian commercial banks are reluctant to use data mining tools to support credit decisions. Artificial neural networks represent a new family of statistical techniques and promising data mining tools that have been used successfully in classification problems in many domains. This paper proposes two credit scoring models using data mining techniques to support loan decisions for the Jordanian commercial banks. Loan application evaluation would improve credit decision effectiveness and control loan office tasks, as well as save analysis time and cost. Both accepted and rejected loan applications, from different Jordanian commercial banks, were used to build the credit scoring models. The results indicate that the logistic regression model performed slightly better than the radial basis function model in terms of the overall accuracy rate. However, the radial basis function was superior in identifying those customers who may default.