دانلود مقاله ISI انگلیسی شماره 48693
ترجمه فارسی عنوان مقاله

شرکت بردار مربوطه مبتنی بر تصمیم گیرنده تصمیم گیری بی نهایت گروه یادگیری برای تجزیه و تحلیل ریسک اعتباری

عنوان انگلیسی
Relevance vector machine based infinite decision agent ensemble learning for credit risk analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48693 2012 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 39, Issue 5, April 2012, Pages 4947–4953

چکیده انگلیسی

In this paper, a relevance vector machine based infinite decision agent ensemble learning (RVMIdeal) system is proposed for the robust credit risk analysis. In the first level of our model, we adopt soft margin boosting to overcome overfitting. In the second level, the RVM algorithm is revised for boosting so that different RVM agents can be generated from the updated instance space of the data. In the third level, the perceptron Kernel is employed in RVM to simulate infinite subagents. Our system RVMIdeal also shares some good properties, such as good generalization performance, immunity to overfitting and predicting the distance to default. According to the experimental results, our proposed system can achieve better performance in term of sensitivity, specificity and overall accuracy.