دانلود مقاله ISI انگلیسی شماره 49616
ترجمه فارسی عنوان مقاله

تشخیص بحران نقدینگی: کاربرد ساختارهای قانون توان دوره لگ برای پیش بینی پیش فرض

عنوان انگلیسی
Liquidity crisis detection: An application of log-periodic power law structures to default prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
49616 2013 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 392, Issue 17, 1 September 2013, Pages 3666–3681

ترجمه کلمات کلیدی
قانون قدرت ورود تناوبی ؛ مقیاس ناپذیری گسسته ؛ فیزیک اقتصاد؛ کمک مالی؛ برآورد پیش فرض
کلمات کلیدی انگلیسی
Log-periodic power law; Discrete scale-invariance; Econophysics; Bailout; Default estimation
پیش نمایش مقاله
پیش نمایش مقاله  تشخیص بحران نقدینگی: کاربرد ساختارهای قانون توان دوره لگ برای پیش بینی پیش فرض

چکیده انگلیسی

We employ the log-periodic power law (LPPL) to analyze the late-2000 financial crisis from the perspective of critical phenomena. The main purpose of this study is to examine whether LPPL structures in the development of credit default swap (CDS) spreads can be used for default classification. Based on the different triggers of Bear Stearns’ near bankruptcy during the late-2000 financial crisis and Ford’s insolvency in 2009, this study provides a quantitative description of the mechanism behind bank runs. We apply the Johansen–Ledoit–Sornette (JLS) positive feedback model to explain the rise of financial institutions’ CDS spreads during the global financial crisis 2007–2009. This investigation is based on CDS spreads of 40 major banks over the period from June 2007 to April 2009 which includes a significant CDS spread increase. The qualitative data analysis indicates that the CDS spread variations have followed LPPL patterns during the global financial crisis. Furthermore, the univariate classification performances of seven LPPL parameters as default indicators are measured by Mann–Whitney U tests. The present study supports the hypothesis that discrete scale-invariance governs the dynamics of financial markets and suggests the application of new and fast updateable default indicators to capture the buildup of long-range correlations between creditors.