دانلود مقاله ISI انگلیسی شماره 97578
ترجمه فارسی عنوان مقاله

روش تأیید اعتبار با استفاده از یک بار کشف چالش بر اساس الگوهای رفتار کاربر گرفته شده در مجموعه داده های تراکنش

عنوان انگلیسی
Authentication approach using one-time challenge generation based on user behavior patterns captured in transactional data sets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
97578 2017 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Security, Volume 67, June 2017, Pages 107-121

ترجمه کلمات کلیدی
تأیید هویت کاربر، یک بار تولید چالش، پروفایل رفتار کاربر الگوهای مجموعه داده های تراکنش، احراز هویت مبتنی بر دانش، احراز هویت مبتنی بر سوال،
کلمات کلیدی انگلیسی
User authentication; One-time challenge generation; User behavior profiling; Transactional data set patterns; Knowledge-based authentication; Question-based authentication;
پیش نمایش مقاله
پیش نمایش مقاله  روش تأیید اعتبار با استفاده از یک بار کشف چالش بر اساس الگوهای رفتار کاربر گرفته شده در مجموعه داده های تراکنش

چکیده انگلیسی

Knowledge-based authentication methods have become increasingly popular, where they started as simple passwords, before evolving into static questions for fallback authentication and graphical password-based systems. Question-based authentication methods are typically based on static or slowly changing data sources, thereby making them vulnerable to eavesdropping, wiretapping, and other types of attacks. Thus, an alternative approach is needed to create an authentication challenge that could compete with other authentication factors: hardware tokens and biometrics. In this study, we propose a new authentication approach that exploits the user behavior patterns captured in non-public data sources to create unique, one-time challenges. We propose: (i) a model that is capable of representing user behavior patterns in a wide range of user activities captured from various data sources and (ii) a method for creating unique one-time challenges based on the model. We tested the model and the method based on multiple non-public data sources such as bank transactions, phone logs, computer usage data, and e-mail correspondence. We also demonstrated its efficacy with a live user pool. Security analysis indicated the full resilience of the proposed method against eavesdropping as well as its adaptability in response to guessing attacks by dynamically increasing the complexity of the challenge.