دانلود مقاله ISI انگلیسی شماره 140750
ترجمه فارسی عنوان مقاله

یک حلال عددی مبتنی بر معادله انتگرال برای تیلور در هندسه های توریدی

عنوان انگلیسی
An integral equation-based numerical solver for Taylor states in toroidal geometries
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
140750 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Computational Physics, Volume 359, 15 April 2018, Pages 263-282

پیش نمایش مقاله
پیش نمایش مقاله  یک حلال عددی مبتنی بر معادله انتگرال برای تیلور در هندسه های توریدی

چکیده انگلیسی

We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.