دانلود مقاله ISI انگلیسی شماره 92588
ترجمه فارسی عنوان مقاله

چارچوب انطباق خود را برای خیاط کردن یک مدل یادگیری عصبی-عامل برای حل مشکلات زمانبندی پویا در زمان واقعی

عنوان انگلیسی
On-line self-adaptive framework for tailoring a neural-agent learning model addressing dynamic real-time scheduling problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
92588 2017 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Manufacturing Systems, Volume 45, October 2017, Pages 97-108

ترجمه کلمات کلیدی
مدل یادگیری عصبی، برنامه ریزی پویا، اقتباس زمان واقعی، جریان داده ها، مفهوم رانش
کلمات کلیدی انگلیسی
Neural-agent learning model; Dynamic scheduling; Real time adaptation; Data stream; Concept drift;
پیش نمایش مقاله
پیش نمایش مقاله  چارچوب انطباق خود را برای خیاط کردن یک مدل یادگیری عصبی-عامل برای حل مشکلات زمانبندی پویا در زمان واقعی

چکیده انگلیسی

The dynamic nature and time-varying behavior of actual environments provide serious challenges for learning models. Thus, changes may deteriorate the constructed control policy over time, which requires permanent adaptation strategies. Changes usually appear as an evolution in the relationship between instance variables composing stream data, known in machine learning under the term concept drift. Several adaptation strategies have been performed to tackle concept drifting data streams, always assuming that arrived instances are labeled, either completely or partially. However, this assumption is violated in many application areas, especially in the manufacturing field. We propose, in this paper, a new framework called Labeling Extraction from the current Model (LEM). LEM is adapted to retrieve learning labels, relying uniquely on unlabeled received instances and without any external supervision, which has never been previously addressed. Hence, to the best of our knowledge, there has been no effort addressing scheduling manufacturing problems for adaptation to data streams with concept drifts. Experiments are conducted to show the effectiveness of LEM. The obtained results demonstrate the ability of LEM to maintain the stability and efficiency of the control policy approximated by the learning model, by significantly improving its prediction performance, compared to its use without adaptation.