دانلود مقاله ISI انگلیسی شماره 99534
ترجمه فارسی عنوان مقاله

همبستگی و جریان اطلاعات بین نیویورک تایمز و بازار سهام

عنوان انگلیسی
Correlations and flow of information between the New York Times and stock markets
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
99534 2018 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 502, 15 July 2018, Pages 403-415

ترجمه کلمات کلیدی
نظریه ماتریس تصادفی، انتقال آنتروپی، تجزیه و تحلیل احساسات، مالیات رفتاری،
کلمات کلیدی انگلیسی
Random matrix theory; Transfer entropy; Sentiment analysis; Behavioral finance;
پیش نمایش مقاله
پیش نمایش مقاله  همبستگی و جریان اطلاعات بین نیویورک تایمز و بازار سهام

چکیده انگلیسی

We use Random Matrix Theory (RMT) and information theory to analyze the correlations and flow of information between 64,939 news from The New York Times and 40 world financial indices during 10 months along the period 2015–2016. The set of news is quantified and transformed into daily polarity time series using tools from sentiment analysis. The results show that a common factor influences the world indices and news, which even share the same dynamics. Furthermore, the global correlation structure is found to be preserved when adding white noise, what indicates that correlations are not due to sample size effects. Likewise, we find a considerable amount of information flowing from news to world indices for some specific delay. This is of practical interest for trading purposes. Our results suggest a deep relationship between news and world indices, and show a situation where news drive world market movements, giving a new evidence to support behavioral finance as the current economic paradigm.