دانلود مقاله ISI انگلیسی شماره 99569
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل احساسات کاربر با نفوذ بر جامعه مبتنی بر موضوع میکروبلاگینگ

عنوان انگلیسی
Influential user weighted sentiment analysis on topic based microblogging community
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
99569 2018 43 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 92, February 2018, Pages 403-418

ترجمه کلمات کلیدی
تجزیه و تحلیل احساسات، کاربر قابل اعتماد تجزیه و تحلیل شبکه شبکه، خدمات میکروبلاگینگ،
کلمات کلیدی انگلیسی
Sentiment analysis; Influential user; Social network analysis; Microblogging service;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل احساسات کاربر با نفوذ بر جامعه مبتنی بر موضوع میکروبلاگینگ

چکیده انگلیسی

Nowadays, social microblogging services have become a popular expression platform of what people think. People use these platforms to produce content on different topics from finance, politics and sports to sociological fields in real-time. With the proliferation of social microblogging sites, the massive amount of opinion texts have become available in digital forms, thus enabling research on sentiment analysis to both deepen and broaden in different sociological fields. Previous sentiment analysis research on microblogging services generally focused on text as the unique source of information, and did not consider the social microblogging service network information. Inspired by the social network analysis research and sentiment analysis studies, we find that people’s trust in a community have an important place in determining the community’s sentiment polarity about a topic. When studies in the literature are examined, it is seen that trusted users in a community are actually influential users. Hence, we propose a novel sentiment analysis approach that takes into account the social network information as well. We concentrate on the effect of influential users on the sentiment polarity of a topic based microblogging community. Our approach extends the classical sentiment analysis methods, which only consider text content, by adding a novel PageRank-based influential user finding algorithm. We have carried out a comprehensive empirical study of two real-world Twitter datasets to analyze the correlation between the mood of the financial social community and the behavior of the stock exchange of Turkey, namely BIST100, using Pearson correlation coefficient method. Experimental results validate our assumptions and show that the proposed sentiment analysis method is more effective in finding topic based microblogging community’s sentiment polarity.