دانلود مقاله ISI انگلیسی شماره 104112
ترجمه فارسی عنوان مقاله

یک شبکه عصبی مورفولوژیک برای مشکلات طبقه بندی باینری

عنوان انگلیسی
A morphological neural network for binary classification problems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
104112 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Engineering Applications of Artificial Intelligence, Volume 65, October 2017, Pages 12-28

ترجمه کلمات کلیدی
شبکه عصبی مورفولوژیکی، مورفولوژی ریاضی، نظریه شبکه یادگیری مبتنی بر شیب نزولی، طبقه بندی باینری،
کلمات کلیدی انگلیسی
Morphological neural network; Mathematical morphology; Lattice theory; Descending gradient-based learning; Binary classification;
پیش نمایش مقاله
پیش نمایش مقاله  یک شبکه عصبی مورفولوژیک برای مشکلات طبقه بندی باینری

چکیده انگلیسی

The dilation–erosion perceptron (DEP) is a hybrid morphological processing unit, composed of a balanced combination between dilation and erosion morphological operators, recently presented in the literature to solve some problems. However, a drawback arises from such model for building complex decision surfaces for non-linearly separable data. In this sense, to overcome this drawback, we present a particular class of morphological neural networks with multilayer structure, called the dilation–erosion neural network (DENN), to deal with binary classification problems. Each processing unit of the DENN is composed by a DEP processing unit. Also, a descending gradient-based learning process is presented to train the DENN, according to ideas from Pessoa and Maragos. Furthermore, we conduct an experimental analysis with the DENN using a relevant set of binary classification problems, and the obtained results indicate similar or superior classification performance to those achieved by classical and state of the art models presented in the literature.