In this paper, we study the problem of continuous time option pricing with transaction costs by using the homogeneous subdiffusive fractional Brownian motion (HFBM) Z(t)=X(Sα(t))Z(t)=X(Sα(t)), 0<α<10<α<1, here dX(τ)=μX(τ)(dτ)2H+σX(τ)dBH(τ)dX(τ)=μX(τ)(dτ)2H+σX(τ)dBH(τ), as a model of asset prices, which captures the subdiffusive characteristic of financial markets. We find the corresponding subdiffusive Black–Scholes equation and the Black–Scholes formula for the fair prices of European option, the turnover and transaction costs of replicating strategies. We also give the total transaction costs.
TheclassicalandstillmostpopularmodelofthemarketistheBlack–Scholesmodelbasedonthediffusionprocesscall
geometricBrownianmotion(GBM)where
are constants, and
is the Brownian motion. In the presence of transaction costs (TC), Leland [
] first
examinedoptionreplicationinadiscretetimesetting,andposeamodifiedreplicatingstrategy,whichdependsuponthe
leveloftransactioncostsandupontherevisioninterval,aswellasupontheoptiontobereplicatedandtheenvironment.
Sincethen,alotofauthorsstudythisproblem,butallinadiscretetimesetting[
TheoptionpricingtheoryasdevelopedbyBlack–Scholes[
]restsonanarbitrageargument:bycontinuouslyadjusting
aportfolioconsistingofastockandarisk-freebond,aninvestorcanexactlyreplicatethereturnstoanyoptiononthestock.
Itleadsusnaturallytoposethefollowingquestion.
Inthepresenceoftransactioncosts,isthereanalternativereplicatingstrategydependingupontheleveloftransaction
costsandatechniqueleadingtotheBlack–Scholesequationinacontinuoustimesetting?Doestheperfectreplicationincur
aninfiniteamountoftransactioncosts?
TheBlack–Scholes(BS)modelisbasedonthediffusionprocesscalledgeometricBrownianmotion(GBM).However,the
empiricalstudiesshowthatmanycharacteristicpropertiesofmarketscannotbecapturedbytheBSmodel,suchas:long-
rangecorrelations,heavy-tailedandskewedmarginaldistributions,lackofscaleinvariance,periodsofconstantvalues,etc.
Therefore,inrecentyearsoneobservesmanygeneralizationsoftheBSmodelbasedontheideasandmethodsknownfrom
statisticalandquantumphysics.Inthispaper,wedealwiththeassetpriceexhibitingsubdiffusivedynamics,
1,inwhichthe
priceofanasset
X
(τ)
followsastochasticdifferentialequation
where
isthefractionalBrownianmotion(FBM)withHurstexponen
,and
istheinverse
-stable
subordinatordefinedasbelo
isastrictlyincreasing
-stable
process[
]withLaplacetransformgivenby
.When
reducestothe‘‘objectivetime’’t.Here,weapplythesubdiffusivemechanismoftrappingeventsinorderto
describefinancialdataexhibitingperiodsofconstantvaluesasinRef.[
15
Fromthe
Appendix
,wecanexpressthemodel
intothefollowingform
where
isthefractionalGaussiannoise,heuristically
.TheFBMhastwouniqueproperties:self-
similarityandstationaryincrements[
].TheautocorrelationfunctionoffractionalGaussiannoiseisthememoryker
whichisrightlythefractionaloperatorin
.ThismodelwasfirstproposedbyKoutosimulatethefluctuationofthedistanc
betweenafluorescein–tyrosinepairwithinasingleproteincomplex[
].Eq.
canbeconvertedtoanequationforthe
timecorrelationfunction
bymultiplying
andtakingexpectation,yields
Thelastterm
0for
isorthogonalto
inthephasespace[
].TheLaplacetransformofEq.
gives
where
is the Mittag-Leffler function [
]. So, by computing the covariance of the real data, then using
to
approximateit,wecangetthevalueof
.Fromthecorrelationfunction
,wecangetthemodelislong-dependentfor
1.Notingthat,theself-similarity,stationaryincrementsandlongdependenceareallimportantpropertiesin
financialmarket.
Thispaperisorganizedasfollows.InSection
,byusingadeltahedgingstrategyinitiatedbyLeland[
],wededucethe
Black–Scholesequationwithtransactioncostsincontinuoustimesettingfortheassetprice
where
follows
and
isdefinedin
.IntheSection
,weobtainthecorrespondingBlack–Scholesformula.In
Section
,weestimateturnoverandtransactioncostsofreplicatingstrategies.InSection
,wegivethetotaltransaction
costs.
UsingthestrategyofLeland[
3
],thispaperhasdevelopedatechniqueforreplicatingoptionreturnsinacontinuoustime
settinginthepresenceoftransactioncostsandobtainthecorrespondingBlack–Scholesequations,Black–Scholesformulas
andtotaltransactioncostswithtransactioncostsbothinsubdiffusiveregimeandinrealtime.