دانلود مقاله ISI انگلیسی شماره 19836
ترجمه فارسی عنوان مقاله

پوسته پوسته شدن و وابستگی بلند مدت در انتخاب روش قیمت گذاری V: مقیاس گذاری چندگانه معاملات تامینی و لبخند نوسانات ضمنی تحت مدل سیاه - شولز جزء به جزء با هزینه های معاملاتی

عنوان انگلیسی
Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
19836 2011 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 390, Issue 9, 1 May 2011, Pages 1623–1634

ترجمه کلمات کلیدی
مهار تنظیم - مصون سازی دلتا - پوسته پوسته شدن - نوسانات ضمنی لبخند می زند - هزینه های معامله -
کلمات کلیدی انگلیسی
Anchoring adjustment, Delta hedging, Scaling, Implied volatility smiles, Transaction costs
پیش نمایش مقاله
پیش نمایش مقاله  پوسته پوسته شدن و وابستگی بلند مدت در انتخاب روش قیمت گذاری V: مقیاس گذاری چندگانه معاملات تامینی و لبخند نوسانات ضمنی تحت مدل سیاه - شولز جزء به جزء با هزینه های معاملاتی

چکیده انگلیسی

This paper deals with the problem of discrete time option pricing using the fractional Black–Scholes model with transaction costs. Through the ‘anchoring and adjustment’ argument in a discrete time setting, a European call option pricing formula is obtained. The minimal price of an option under transaction costs is obtained. In addition, the relation between scaling and implied volatility smiles is discussed.

مقدمه انگلیسی

Over the last few years, the financial markets have been regarded as complex and nonlinear dynamic systems. A series of studies has found that many financial market time series display scaling laws and long-range dependence. Therefore, it has been proposed that one should replace the Brownian motion in the classical Black–Scholes model [1] by a process with long-range dependence. A simple modification is to introduce fractional Brownian motion (fBm) as the source of randomness. Thus one adds one parameter, HH, to model the dependence structure in the stock prices (for references to these studies see [2], [3], [4], [5], [6], [7] and [8]). The fractional Black–Scholes model is a generalization of the Black–Scholes model, which is based on replacing the standard Brownian motion by a fractional Brownian motion in the Black–Scholes model. Since fractional Brownian motion is not a semimartingale [9], it has been shown that the fractional Black–Scholes model admits arbitrage in a complete and frictionless market [4], [5], [6], [7] and [9]. However, Guasoni [8] has proved that proportional transaction costs of any positive size eliminate arbitrage opportunities from the fractional Black–Scholes model, but he did not give any corresponding option pricing formulas. Therefore, in a more realistic situation of transaction costs, the magnitude of arbitrage returns associated with those trading strategies in [4], [5], [6], [7] and [10] may create an illusion of profit opportunity when, in fact, none exists. In this paper, on the basis of the points of view of behavioral finance [11] and [12] and econophysics [13] and empirical findings of the long-range dependence in stock returns in [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26] and [27], we will study the option pricing problem under transaction costs while the dynamics of stock price StSt satisfies Leland[ wasthefirstwhoexaminedoptionreplicationinthepresenceoftransactioncostsinadiscretetimesetting. FromthepointofviewofLeland[ ],inamodelwheretransactioncostsareincurredeverytimethestockorthebond is traded, the arbitrage-free argument used by Black and Scholes [ 1 ] no longer applies. The problem is that, due to the infinite variation of the geometric Brownian motion, perfect replication incurs an infinite amount of transaction costs. Hence, he suggested a delta-hedging strategy incorporating transaction costs based on revision at a discrete number of times.Transactioncostsleadtothefailureoftheno-arbitrageprincipleandthecontinuous-timetradeingeneral:instead ofnoarbitrage,theprincipleofhedgepricing–accordingtowhichthepriceofanoptionisdefinedastheminimumlevel ofinitialwealthneededtohedgetheoption–comestothefore. Mandelbrot (for more details, see the discussions in [ ]) proposed the trading time concept and considered the problemofchoosingtheappropriatetimescalingtouseforanalyzingfinancialmarketdataandpricingoptions.InSection byusingadelta-hedgingstrategy,initiatedbyLeland[ ],wewillshowthatthepriceofEuropeanoptionswithtransaction costsunderthefractionalBlack–Scholesmodelaredeterminedbythetradingtimeintervalswhichvarywithrespectto time .InSection ,fromthepointofviewofbehavioralfinance,wegiveanexplanationfortheimpliedvolatilitysmilein optionpricing.InSection ,aconclusionisgiven.

نتیجه گیری انگلیسی

Withoutusinganarbitrageargument,inthispaperweobtainaEuropeancalloptionpricingformulawithtransaction costsforthefractionalBlack–ScholesmodelwithHurstexponent .Ithasbeenshownthatthetimescaling and theHurstexponent H playanimportantroleinoptionpricingwithtransactioncosts.Inparticular,for ,theminimal priceofanoptionundertransactioncostsisobtained,whichcanbeusedastheactualpriceofanoption.Inaddition,we alsoshowthattheoptionrehedgingtimeinterval varieswithrespecttotime andthetimescaling playsanimportantroleindeterminingtheshapeofIVFs.