دانلود مقاله ISI انگلیسی شماره 97417
ترجمه فارسی عنوان مقاله

پنجره خنک کننده با استفاده از معیارهای متوسط ​​ابزارهای نرم افزاری بالا بر جریان داده ها

عنوان انگلیسی
Damped window based high average utility pattern mining over data streams
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
97417 2018 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 144, 15 March 2018, Pages 188-205

ترجمه کلمات کلیدی
داده کاوی، معدن الگو جریان مدل پنجره دم ابزار متوسط ​​بالا، آزمون قابل توجه
کلمات کلیدی انگلیسی
Data mining; Stream pattern mining; Damped window model; High-average utility; Significant test;
پیش نمایش مقاله
پیش نمایش مقاله  پنجره خنک کننده با استفاده از معیارهای متوسط ​​ابزارهای نرم افزاری بالا بر جریان داده ها

چکیده انگلیسی

Data mining methods have been required in both commercial and non-commercial areas. In such circumstances, pattern mining techniques can be used to find meaningful pattern information. Utility pattern mining (UPM) is more suitable for evaluating the usefulness of patterns. The method introduced in this paper employs the high average utility pattern mining (HAUPM) approach, which is one of the UPM approaches and discovers interesting patterns of which the items have more meaningful relations among one another by using a novel utility measure. Meanwhile, past research on pattern mining algorithms mainly focus on mining tasks processing static database such as batch operations. Most continuous, unbounded stream data such as data constantly produced from heart beat sensors should be treated differently with respect to importance because up-to-date data may have higher influence than old data. Therefore, our approach also adopts the concept of the damped window model to gain more useful patterns in stream environments. Various experiments are performed on real datasets in order to demonstrate that the designed method not only provides important, recent pattern information but also requires less computational resources such as execution time, memory usage, scalability and significant test.