دانلود مقاله ISI انگلیسی شماره 1017
ترجمه فارسی عنوان مقاله

مدیریت ارتباط با مشتری (CRM) در محیط های خرده فروشی چند مجرایی با داده های غنی : نقد و بررسی و دستورالعمل های پژوهشی آینده

عنوان انگلیسی
CRM in Data-Rich Multichannel Retailing Environments: A Review and Future Research Directions
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
1017 2010 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Interactive Marketing, lume 24, Issue 2, May 2010, Pages 121–137

ترجمه کلمات کلیدی
مدیریت ارتباط با مشتری - پایگاه داده - بازار یابی‌ چند مجرایی - خرده فروشی -
کلمات کلیدی انگلیسی
Customer relationship management,Database,Multichannel marketing,Retailing,
پیش نمایش مقاله
پیش نمایش مقاله  مدیریت ارتباط با مشتری (CRM) در محیط های خرده فروشی چند مجرایی با داده های غنی : نقد و بررسی و دستورالعمل های پژوهشی آینده

چکیده انگلیسی

any retailers have collected large amounts of customer data using, for example, loyalty programs. We provide an overview of the extant literature on customer relationship management (CRM), with a specific focus on retailing. We discuss how retailers can gather customer data and how they can analyze these data to gain useful customer insights. We provide an overview of the methods predicting customer responses and behavior over time. We also discuss the existing knowledge on the application of marketing actions in a CRM context, while providing an in-depth discussion on CRM and firm value. We outline future research directions based on the literature review and retail practice insights.

مقدمه انگلیسی

Over the past decade, retailers have been able to collect enormous amounts of information at the customer level measuring customer purchases, marketing activities, and customer attitudes. An important example is Tesco, which is using its Loyalty Card as a core element of its marketing strategy (e.g., Humby and Hunt 2003). Despite this trend, many retailers have also decided not to invest in building large customer databases. One reason is to be able to focus on low prices and operational excellence as exemplified by discount retailers such as Aldi, Lidl, and Wal-Mart. While these retailers still collect large amounts of data, it is often not at the customer level. The ubiquity of retail data, regardless of whether at the customer level or not, has created tremendous opportunities as well as challenges for both retail practitioners and researchers in retailing. On the practitioner side, the results of using customer data are mixed. Tesco is one of the successful retailers that extensively use a customer database and is frequently cited as a successful benchmark in textbooks and the business press (Humby & Hunt, 2003 and Kumar & Reinartz, 2005). However, other retailers have not been successful at leveraging their customer databases. A McKinsey study reports that the majority of retailers are unable to recover the investments in loyalty programs, especially because only less than 50% of customers increase their spending after enrolling in a loyalty program (Cigliano et al. 2000). The practitioner dilemma has been reflected in multiple discussions that have arisen within the academic community on the effectiveness of loyalty programs in retailing (e.g., Dowling & Uncles, 1997 and Shugan, 2005). Numerous empirical studies that use large customer databases examine how firms can increase loyalty metrics such as retention rates, cross-buying and customer share (e.g., Verhoef, 2003, Verhoef et al., 2001 and Kumar et al., 2008b), and/or how firms can predict these metrics (e.g., Fader et al., 2005 and Neslin et al., 2006a). Other studies have specifically focused on how firms can influence and optimize customer value (e.g., Rust & Verhoef, 2005, Venkatesan & Kumar, 2004 and Venkatesan et al., 2007a). In sum, there is an existing knowledge base on how to influence and predict customer loyalty and how to optimize customer value (for overviews, see Gupta & Zeithaml, 2006, Verhoef et al., 2007b and Blattberg et al., 2009). In addition to customer value management, multichannel retailing has gained importance as a consequence of the ability of the retailers to amass large customer databases and more broadly ability to obtain a view of the customers across several channels. Multichannel retailing presents the retailer with the opportunity to improve customer profitability by offering a variety of transaction options for the customer. At the same time, the increasing multichannel orientation of retailing practice has created huge challenges for retailers in having real-time access to reliable data across different channels and in understanding and predicting customer behavior across different channels (e.g., Ansari et al., 2008, Arikan, 2008, Dholakia et al., 2010, Kushwaha & Shankar, 2007, Neslin et al., 2006b, Neslin & Shankar, 2009, Verhoef et al., 2007a and Venkatesan et al., 2007b). For example, several stores such as Best Buy offer customers the option of ordering products online and picking up the products in a nearby offline store. The A CNET.com research shows that execution of this option still remains a challenge for several retailers1. Specifically, the ability to immediately recognize a customer's online order in the offline store still remains a challenge for retailers. While there is research in marketing that has looked at the impact of various aspects of the customer relationship management (CRM) process on customer outcomes (Reinartz et al., 2004 and Du et al., 2007), many retailers do not collect the right data, analyze the data appropriately, or initiate the optimal marketing actions to achieve the best customer outcomes, possibly leading to many failed CRM implementations. In this paper, we discuss the application of CRM in retail environments. We elaborate on current knowledge from the academic marketing literature and discuss its relevance in the increasingly multichannel and multimedia retail environment. Furthermore, we provide new research directions on CRM in data-rich retail environments. The remainder of this paper is structured as follows. We first discuss the conceptual role of CRM in retail environments and present our conceptual model. Subsequently, we address the specific topics within the conceptual model, such as data usage and the application of marketing actions. We address specific research questions within each topic. We also provide a discussion of future research opportunities within each topic covered by our conceptual model.

نتیجه گیری انگلیسی

In this paper, we discussed the role of CRM in retailing. Executing CRM in retailing is a challenging exercise. However, extant literature on CRM shows that performance gains can be enormous. We provided an overview of the literature that reflects the extensive knowledge base on CRM. Researchers have developed new models that offer deep insights on how marketing actions affect individual customer behavior. Based on this overview of the literature and our knowledge of CRM practice, we have outlined several opportunities for further research as summarized in Table 2. The enormous amount of customer data in retailing environments and the integration of channels, which now allow observation of online search behavior, will create new research challenges. For retail managers, our overview of the literature provides useful insights on how to execute CRM in their daily practice. The availability of a vast amount of data, however, creates challenges. The academic literature has developed useful methods for targeting the right customers with the right offer at the right time and for predicting future behavior and customer value. Furthermore, research has produced findings on how specific marketing actions affect customer performance. This knowledge can be used to improve marketing decision-making in the increasingly multichannel retail environment.