دانلود مقاله ISI انگلیسی شماره 39893
ترجمه فارسی عنوان مقاله

افزایش اثربخشی از طبقه بندی های ارتباطی از نظر عدم تعادل کلاس با استفاده از یک الگوریتم هرس رمان

عنوان انگلیسی
Increasing the effectiveness of associative classification in terms of class imbalance by using a novel pruning algorithm
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
39893 2012 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 39, Issue 17, 1 December 2012, Pages 12841–12850

ترجمه کلمات کلیدی
طبقه بندی ارتباطی - بازاریابی مستقیم - وقایع نادر - عدم تعادل کلاس - طبقه بندی احتمالاتی
کلمات کلیدی انگلیسی
Associative classification; Direct marketing; Rare events; Class imbalance; Scoring; Probabilistic classifiers
پیش نمایش مقاله
پیش نمایش مقاله  افزایش اثربخشی از طبقه بندی های ارتباطی از نظر عدم تعادل کلاس با استفاده از یک الگوریتم هرس رمان

چکیده انگلیسی

Having received considerable interest in recent years, associative classification has focused on developing a class classifier, with lesser attention paid to the probability classifier used in direct marketing. While contributing to this integrated framework, this work attempts to increase the prediction accuracy of associative classification on class imbalance by adapting the scoring based on associations (SBA) algorithm. The SBA algorithm is modified by coupling it with the pruning strategy of association rules in the probabilistic classification based on associations (PCBA) algorithm, which is adjusted from the CBA for use in the structure of the probability classifier. PCBA is adjusted from CBA by increasing the confidence through under-sampling, setting different minimum supports (minsups) and minimum confidences (minconfs) for rules of different classes based on each distribution, and removing the pruning rules of the lowest error rate. Experimental results based on benchmark datasets and real-life application datasets indicate that the proposed method performs better than C5.0 and the original SBA do, and the number of rules required for scoring is significantly reduced.