دانلود مقاله ISI انگلیسی شماره 39894
ترجمه فارسی عنوان مقاله

تقسیم بندی کمک کننده: هنگامی که آمار خلاصه کل موضوع را تایید می کند

عنوان انگلیسی
Donor Segmentation: When Summary Statistics Don't Tell the Whole Story
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
39894 2013 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Interactive Marketing, Volume 27, Issue 3, August 2013, Pages 172–184

ترجمه کلمات کلیدی
تقسیم بندی مشتریان - جمع آوری کمک مالی غیر انتفاعی - ایمیل مستقیم - انتظار - حداکثر (EM) الگوریتم - تجزیه و تحلیل مبتنی بر مشتری
کلمات کلیدی انگلیسی
Customer segmentation; Non-profit fundraising; Direct mail; Expectation–maximization (EM) algorithm; Customer-based analysis
پیش نمایش مقاله
پیش نمایش مقاله  تقسیم بندی کمک کننده: هنگامی که آمار خلاصه کل موضوع را تایید می کند

چکیده انگلیسی

Much of the research on customer segmentation summarizes response data (e.g., purchase and contribution histories) via recency, frequency and monetary value (RFM) statistics. Individuals sharing similar RFM characteristics are grouped together; the rationale being that the best predictor of future behavior is past behavior. Summary statistics such as RFM, however, introduce aggregation bias that mask the dynamics of purchase/contribution behavior. Accordingly, we implement latent-class segmentation models where alumni are classified based on how an individual's contribution sequence compares to those of other individuals. The framework's capability to process contribution sequences, i.e., longitudinal data, provides fundamental new insights into donor contribution behavior, and provides a rigorous mechanism to infer and segment the population based on unobserved heterogeneities (as well as based on other observable characteristics). Specifically, we analyze Markov mixture models to segment alumni based on contribution-behavior patterns, under the assumption of serially-dependent contribution sequences. We use the expectation–maximization algorithm to obtain parameter estimates for each segment. Through an extensive empirical study, we highlight the substantive insights gained through the processing of the full contribution sequences, and establish the presence of three distinct classes of alumni in the population (each with a discernible contribution pattern). The proposed framework, collectively, provides a basis to tailor direct marketing policies to optimize specific performance criteria (e.g., profits).