دانلود مقاله ISI انگلیسی شماره 40692
ترجمه فارسی عنوان مقاله

توصیه های اجتماعی مورد ستفاده برای تصمیم گیری در سیستم های چند عامله توزیع

عنوان انگلیسی
Utilising social recommendation for decision-making in distributed multi-agent systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
40692 2015 23 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 42, Issue 6, 15 April 2015, Pages 2884–2906

ترجمه کلمات کلیدی
سیستم های چند عامله - عوامل نرم افزار خود سازمان ده - رفتار مهندسی ضروری
کلمات کلیدی انگلیسی
Multi-agent systems; Self-organising software agents; Engineering emergent behaviour
پیش نمایش مقاله
پیش نمایش مقاله  توصیه های اجتماعی مورد ستفاده برای تصمیم گیری در سیستم های چند عامله توزیع

چکیده انگلیسی

Open multi-agent systems are typically formed from heterogeneous peers operating in a decentralised manner. Hence, their constituent agents must evaluate possible actions and opportunities based on local, subjective knowledge. When agents have insufficient personal experience, they may inevitably rely on their social connections to act as a source of relevant information or recommendations. We describe an agent-mediated electronic market for investigating social interaction within the context of evolving heterogeneous distributed networks. In our scenario, consumers look for appropriate services and this service choice is informed via peer recommendations. We define two alternative algorithms for selecting peers based on perceived similarity and we evaluate them on their ability to organise an overlay network such that it acts as a passive filter, tailoring the information that agents use to select services in the market. We use this scenario to explore the link between the peer selection algorithms and the emergent network topologies, as well as the impact of the peer selection algorithm on the agents’ performance in choosing services based on peer recommendations. Our simulation results demonstrate a qualitative difference in the behaviour of the algorithms, with optimal algorithm selection relying on information regarding the preferences of the wider population of agents.