دانلود مقاله ISI انگلیسی شماره 43375
ترجمه فارسی عنوان مقاله

طبقه بندی مبتنی بر موضوع و الگوی شناسایی در اختراع ثبت شده

عنوان انگلیسی
Topic based classification and pattern identification in patents
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
43375 2015 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Technological Forecasting and Social Change, Volume 94, May 2015, Pages 236–250

ترجمه کلمات کلیدی
اختراع ثبت شده - مدل سازی موضوع - طبقه بندی سند - همگرایی فن آوری - فتوولتائیک خورشیدی - جریان دانش
کلمات کلیدی انگلیسی
Patents; Topic modeling; Document classification; Technology convergence; Solar photovoltaic; Knowledge flows
پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی مبتنی بر موضوع و الگوی شناسایی در اختراع ثبت شده

چکیده انگلیسی

Patent classification systems and citation networks are used extensively in innovation studies. However, non-unique mapping of classification codes onto specific products/markets and the difficulties in accurately capturing knowledge flows based just on citation linkages present limitations to these conventional patent analysis approaches. We present a natural language processing based hierarchical technique that enables the automatic identification and classification of patent datasets into technology areas and sub-areas. The key novelty of our technique is to use topic modeling to map patents to probability distributions over real world categories/topics. Accuracy and usefulness of our technique are tested on a dataset of 10,201 patents in solar photovoltaics filed in the United States Patent and Trademark Office (USPTO) between 2002 and 2013. We show that linguistic features from topic models can be used to effectively identify the main technology area that a patent's invention applies to. Our computational experiments support the view that the topic distribution of a patent offers a reduced-form representation of the knowledge content in a patent. Accordingly, we suggest that this hidden thematic structure in patents can be useful in studies of the policy–innovation–geography nexus. To that end, we also demonstrate an application of our technique for identifying patterns in technological convergence.