دانلود مقاله ISI انگلیسی شماره 47689
ترجمه فارسی عنوان مقاله

پروفایل کاربران توییتر بر اساس استخراج متن و جامعه برای تجزیه و تحلیل بازار

عنوان انگلیسی
Twitter user profiling based on text and community mining for market analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
47689 2013 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 51, October 2013, Pages 35–47

ترجمه کلمات کلیدی
وب کاوی؛ تحلیل بازار؛ پروفایل کاربران - توییتر؛ تجزیه و تحلیل متن؛ تجزیه و تحلیل جامعه؛ فراگیری ماشین
کلمات کلیدی انگلیسی
Web mining; Market analysis; User profiling; Twitter; Text analysis; Community analysis; Machine learning
پیش نمایش مقاله
پیش نمایش مقاله  پروفایل کاربران توییتر بر اساس استخراج متن و جامعه برای تجزیه و تحلیل بازار

چکیده انگلیسی

This paper proposes demographic estimation algorithms for profiling Twitter users, based on their tweets and community relationships. Many people post their opinions via social media services such as Twitter. This huge volume of opinions, expressed in real time, has great appeal as a novel marketing application. When automatically extracting these opinions, it is desirable to be able to discriminate discrimination based on user demographics, because the ratio of positive and negative opinions differs depending on demographics such as age, gender, and residence area, all of which are essential for market analysis. In this paper, we propose a hybrid text-based and community-based method for the demographic estimation of Twitter users, where these demographics are estimated by tracking the tweet history and clustering of followers/followees. Our experimental results from 100,000 Twitter users show that the proposed hybrid method improves the accuracy of the text-based method. The proposed method is applicable to various user demographics and is suitable even for users who only tweet infrequently.