دانلود مقاله ISI انگلیسی شماره 85223
ترجمه فارسی عنوان مقاله

شرکت کنندگان پیش بینی کننده انتشار اطلاعات در شبکه های اجتماعی با برنامه های کاربردی آن است

عنوان انگلیسی
Forecasting participants of information diffusion on social networks with its applications
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
85223 2018 34 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 422, January 2018, Pages 432-446

ترجمه کلمات کلیدی
پیش بینی توزیع، انتشار اطلاعات، شبکه اجتماعی، مشارکت نفوذ، نفوذ اجتماعی، پیش بینی محبوبیت،
کلمات کلیدی انگلیسی
Diffusion forecasting; Information diffusion; Social network; Diffusion participation; Social influence; Popularity prediction;
پیش نمایش مقاله
پیش نمایش مقاله  شرکت کنندگان پیش بینی کننده انتشار اطلاعات در شبکه های اجتماعی با برنامه های کاربردی آن است

چکیده انگلیسی

Social networking services allow users to adopt and spread information via diffusion actions, e.g., share, retweet, and reply. Real applications such as viral marketing and trending topic detection rely on information diffusion. Given past items with diffusion records on a social network, this paper aims at forecasting who will participate in the diffusion of a new item c (we use hashtags in the paper) with its k earliest adopters, without using content and profile information, i.e., finding which users will adopt c in the future. We define the Diffusion Participation Forecasting (DPF) problem, which is challenging since all users except for early adopters can be the candidates, comparing to existing studies that predict which one-layer followers will adopt a new hashtag given past diffusion observations with content and profile info. To solve the DFP problem, we propose an Adoption-based Participation Ranking (APR) model, which aims to rank the actual participants in reality at higher positions. The first is to estimate the adoption probability of a new hashtag for each user while the second is a random walk-based model that incorporates nodes with higher adoption probability values and early adopters to generate the forecasted participants. Experiments conducted on Twitter exhibit that our model can significantly outperform several competing methods in terms of Precision and Recall. Moreover, we demonstrate that an accurate DPF can be applied for effective targeted marketing using influence maximization and boosting the accuracy of popularity prediction in social media.