دانلود مقاله ISI انگلیسی شماره 136582
ترجمه فارسی عنوان مقاله

مدل محاسباتی برای ادراک مصرف کنندگان معدن در رسانه های اجتماعی

عنوان انگلیسی
A computational model for mining consumer perceptions in social media
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
136582 2017 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 93, January 2017, Pages 98-110

ترجمه کلمات کلیدی
رسانه های اجتماعی، اطلاعات بزرگ، ادراکات مصرف کننده،
کلمات کلیدی انگلیسی
Social media; Big data; Consumer perceptions;
پیش نمایش مقاله
پیش نمایش مقاله  مدل محاسباتی برای ادراک مصرف کنندگان معدن در رسانه های اجتماعی

چکیده انگلیسی

The proliferation of Big Data & Analytics in recent years has compelled marketing practitioners to search for new methods when faced with assessing brand performance during brand equity appraisal. One of the challenges of current practices is that these methods rely heavily on traditional data collection and analysis methods such as questionnaires, and face to face or telephone interviews, which have a significant time lag. In this paper we introduce a computational model that combines topic and sentiment classification to elicit influential subjects from consumer perceptions in social media. Our model devises a novel genetic algorithm to improve clustering of tweets in semantically coherent groups, which act as an essential prerequisite when searching for prevailing topics and sentiment in big pools of data. To illustrate the validity of our model, we apply it to the Uber transportation network, from data collected through Twitter for the period between January and April 2015. The results obtained present consumer perceptions and produce insights for two fundamental brand equity dimensions: brand awareness and brand meaning. Simultaneously, they improve clustering results, in comparison to the k-means approach.