دانلود مقاله ISI انگلیسی شماره 13873
ترجمه فارسی عنوان مقاله

پیش بینی سهم بازار از مدل هایی برای فروش

عنوان انگلیسی
Forecasting market shares from models for sales
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
13873 2001 8 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 3900 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 18 تومان 8 روز بعد از پرداخت 70,200 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 36 تومان 4 روز بعد از پرداخت 140,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
تولید محتوا برای سایت شما
پایگاه ISIArticles آمادگی دارد با همکاری مجموعه «شهر محتوا» با بهره گیری از منابع معتبر علمی، برای کتاب، سایت، وبلاگ، نشریه و سایر رسانه های شما، به زبان فارسی «تولید محتوا» نماید.
  • تولید محتوا با مقالات ISI برای سایت یا وبلاگ شما
  • تولید محتوا با مقالات ISI برای کتاب شما
  • تولید محتوا با مقالات ISI برای نشریه یا رسانه شما
  • و...

پیشنهاد می کنیم کیفیت محتوای سایت خود را با استفاده از منابع علمی، افزایش دهید.

سفارش تولید محتوا کد تخفیف 10 درصدی: isiArticles
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Forecasting, Volume 17, Issue 1, January–March 2001, Pages 121–128

ترجمه کلمات کلیدی
- مدل های فروش - سهم بازار - پیش بینی
کلمات کلیدی انگلیسی
Sales models,Market shares,Forecasting
پیش نمایش مقاله
پیش نمایش مقاله پیش بینی سهم بازار از مدل هایی برای فروش

چکیده انگلیسی

Dividing forecasts of brand sales by a forecast of category sales, when they are generated from brand specific sales–response models, renders biased forecasts of the brands’ market shares. In this note we propose as an alternative a simulation-based method which results in unbiased forecasts of market shares. An application of this forecasting technique to a five brand tuna fish market illustrates its practical relevance.

مقدمه انگلیسی

Market researchers often focus on modeling and forecasting marketing performance measures, such as brand choice and interpurchase times at the individual household level and sales and market shares at the aggregated level (see e.g. Leeflang, Wittink, Wedel and Naert (2000) and Franses and Paap (2001) for recent surveys). Household-specific data usually concerns cross sections or panels, while aggregated data often concerns weekly or monthly time series observations. Cross-sectional or panel data have the advantage that the effects of marketing instruments can be observed at the individual level, while a potential disadvantage is that often one needs to account for unobserved heterogeneity across households. In contrast, time series observations do not suffer from such heterogeneity, but there it is only possible to draw inference at the aggregate level and one has to take account of possibly complicated dynamic patterns. Here the focus is on forecasting market shares at the brand level. Indeed, market shares can be of particular interest, as shares automatically imply that a manager can evaluate the sales performance relative to the performance of the product category. Also, market shares are less sensitive to the impact of growth and seasonal fluctuations. One obvious question is whether one should construct a quantitative model for market shares using, for example, the familiar attraction model (see Brodie & Kluyver, 1987; Kumar, 1994), or that one should construct a model for sales using for example the scan∗pro model (see Wittink, 1987; Wittink, Addona, Hawkes & Porter, 1988; Foekens, Leeflang & Wittink, 1994; Van Heerde, Leeflang & Wittink, 2000). In the latter case one can then use these models to generate sales forecasts and, given these, forecasts of market shares. In this note we will confine ourselves to the question how one can generate forecasts for shares given models for sales, as this turns out not to be a trivial exercise. We will indicate that simply dividing brand sales forecasts by category sales forecasts, which seems to be common practice, yields biased forecasts for market shares. Hence, one needs to resort to an alternative method. We propose a simulation-based method to obtain unbiased forecasts. Simulation-based methods have become increasingly more common in models for marketing performance measures such as brand choice and interpurchase times (see e.g. Allenby & Rossi, 1999; Bronnenberg, Mahajan & Vanhonacker, 2000). The outline of this paper is as follows. In Section 2, we discuss two methods for forecasting market shares given models for sales. The first method is the above-mentioned division of forecasts, which will be called the naive method, and the second is the more appropriate simulation based method, denoted by SB. In Section 3, we illustrate the practical relevance of the SB method for an example concerning five brands of tuna fish. In Section 4, we conclude with some remarks.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 3900 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 18 تومان 8 روز بعد از پرداخت 70,200 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 36 تومان 4 روز بعد از پرداخت 140,400 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.