دانلود مقاله ISI انگلیسی شماره 144601
ترجمه فارسی عنوان مقاله

بهینه و پایدار قراردادهای بیمه

عنوان انگلیسی
Robust and Pareto optimality of insurance contracts
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
144601 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : European Journal of Operational Research, Volume 262, Issue 2, 16 October 2017, Pages 720-732

ترجمه کلمات کلیدی
مدل سازی عدم اطمینان، برنامه ریزی خطی، بیمه مطلوب / پارتو، اندازه گیری خطر، بهینه سازی قوی،
کلمات کلیدی انگلیسی
Uncertainty modelling; Linear programming; Robust/Pareto optimal insurance; Risk measure; Robust optimisation;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه و پایدار قراردادهای بیمه

چکیده انگلیسی

The optimal insurance problem represents a fast growing topic that explains the most efficient contract that an insurance player may get. The classical problem investigates the ideal contract under the assumption that the underlying risk distribution is known, i.e. by ignoring the parameter and model risks. Taking these sources of risk into account, the decision-maker aims to identify a robust optimal contract that is not sensitive to the chosen risk distribution. We focus on Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)-based decisions, but further extensions for other risk measures are easily possible. The Worst-case scenario and Worst-case regret robust models are discussed in this paper, which have been already used in robust optimisation literature related to the investment portfolio problem. Closed-form solutions are obtained for the VaR Worst-case scenario case, while Linear Programming (LP) formulations are provided for all other cases. A caveat of robust optimisation is that the optimal solution may not be unique, and therefore, it may not be economically acceptable, i.e. Pareto optimal. This issue is numerically addressed and simple numerical methods are found for constructing insurance contracts that are Pareto and robust optimal. Our numerical illustrations show weak evidence in favour of our robust solutions for VaR-decisions, while our robust methods are clearly preferred for CVaR-based decisions.