دانلود مقاله ISI انگلیسی شماره 144751
ترجمه فارسی عنوان مقاله

مطالعه بهینه سازی عملیات کوتاه مدت نیروگاه های آب نیروگاه آبشار با در نظر گرفتن خطای خروجی

عنوان انگلیسی
Study on optimization of the short-term operation of cascade hydropower stations by considering output error
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
144751 2017 62 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hydrology, Volume 549, June 2017, Pages 326-339

ترجمه کلمات کلیدی
مخازن آبشار، عملیات مطلوب مخزن، خطای خروجی، ارزش در معرض خطر، الگوریتم ژنتیک، تئوری ارزش افراطی،
کلمات کلیدی انگلیسی
Cascade reservoirs; Reservoir optimal operation; Output error; Value at Risk; Genetic algorithm; Extreme value theory;
پیش نمایش مقاله
پیش نمایش مقاله  مطالعه بهینه سازی عملیات کوتاه مدت نیروگاه های آب نیروگاه آبشار با در نظر گرفتن خطای خروجی

چکیده انگلیسی

The study of reservoir deterministic optimal operation can improve the utilization rate of water resource and help the hydropower stations develop more reasonable power generation schedules. However, imprecise forecasting inflow may lead to output error and hinder implementation of power generation schedules. In this paper, output error generated by the uncertainty of the forecasting inflow was regarded as a variable to develop a short-term reservoir optimal operation model for reducing operation risk. To accomplish this, the concept of Value at Risk (VaR) was first applied to present the maximum possible loss of power generation schedules, and then an extreme value theory-genetic algorithm (EVT-GA) was proposed to solve the model. The cascade reservoirs of Yalong River Basin in China were selected as a case study to verify the model, according to the results, different assurance rates of schedules can be derived by the model which can present more flexible options for decision makers, and the highest assurance rate can reach 99%, which is much higher than that without considering output error, 48%. In addition, the model can greatly improve the power generation compared with the original reservoir operation scheme under the same confidence level and risk attitude. Therefore, the model proposed in this paper can significantly improve the effectiveness of power generation schedules and provide a more scientific reference for decision makers.