دانلود مقاله ISI انگلیسی شماره 146400
ترجمه فارسی عنوان مقاله

بررسی اثرات فضایی و زمانی در تحلیل روند سقوط ترافیک

عنوان انگلیسی
Exploring spatio-temporal effects in traffic crash trend analysis
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
146400 2017 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Analytic Methods in Accident Research, Volume 16, December 2017, Pages 104-116

ترجمه کلمات کلیدی
مدلسازی اسپکتیو-زمانبندی، بیزی، تقریب یکپارچه لاپلاس ناسازگار، خودکفاء شرطی، ناهمگونی ناشناخته،
کلمات کلیدی انگلیسی
Spatio-temporal modeling; Bayesian; Integrated nested Laplace approximation; Conditional autoregressive; Unobserved heterogeneity;
پیش نمایش مقاله
پیش نمایش مقاله  بررسی اثرات فضایی و زمانی در تحلیل روند سقوط ترافیک

چکیده انگلیسی

Unobserved heterogeneity produced by spatial and temporal correlations of crashes often needs to be captured in crash frequency modeling. Although many studies have included either spatial or temporal effects in crash frequency modeling, only a limited number of studies have considered both. This study addresses the limitations of existing studies by exploring multiple models that best fit the spatial and temporal correlations. In this study, we used Bayesian spatio-temporal models to investigate regional crash frequency trends, and explored the effects of omitting spatial or temporal trends in spatio-temporal correlated data. The fast Bayesian inference approach, integrated nested Laplace approximation, was used to estimate parameters. It was found that fatal crashes showed decreasing trends in all Iowa counties from 2006 to 2015, but the decreasing rates varied by counties. Among all the covariates investigated, only vehicle miles traveled (VMT) was significant. None of the socio-economic or weather indicators were found to be significant in the presence of VMT. Both spatial and temporal effects were found to be important, and they were responsible for both over dispersion and zero inflation in the crash data. In addition, spatial effects played a more important role than did temporal effects in the studied dataset, but temporal component selection was still important in spatio-temporal modeling.