دانلود مقاله ISI انگلیسی شماره 161961
ترجمه فارسی عنوان مقاله

اظهار نظر در مورد رگرسیون گسوس چند خروجی

عنوان انگلیسی
Remarks on multi-output Gaussian process regression
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
161961 2018 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 144, 15 March 2018, Pages 102-121

پیش نمایش مقاله
پیش نمایش مقاله  اظهار نظر در مورد رگرسیون گسوس چند خروجی

چکیده انگلیسی

Multi-output regression problems have extensively arisen in modern engineering community. This article investigates the state-of-the-art multi-output Gaussian processes (MOGPs) that can transfer the knowledge across related outputs in order to improve prediction quality. We classify existing MOGPs into two main categories as (1) symmetric MOGPs that improve the predictions for all the outputs, and (2) asymmetric MOGPs, particularly the multi-fidelity MOGPs, that focus on the improvement of high fidelity output via the useful information transferred from related low fidelity outputs. We review existing symmetric/asymmetric MOGPs and analyze their characteristics, e.g., the covariance functions (separable or non-separable), the modeling process (integrated or decomposed), the information transfer (bidirectional or unidirectional), and the hyperparameter inference (joint or separate). Besides, we assess the performance of ten representative MOGPs thoroughly on eight examples in symmetric/asymmetric scenarios by considering, e.g., different training data (heterotopic or isotopic), different training sizes (small, moderate and large), different output correlations (low or high), and different output sizes (up to four outputs). Based on the qualitative and quantitative analysis, we give some recommendations regarding the usage of MOGPs and highlight potential research directions.