دانلود مقاله ISI انگلیسی شماره 51185
ترجمه فارسی عنوان مقاله

تصادفی چند سایت برنامه ریزی ظرفیت تولید TFT-LCD با استفاده از تجزیه مبتنی بر قیمت سایه موردانتظار

عنوان انگلیسی
Stochastic multi-site capacity planning of TFT-LCD manufacturing using expected shadow-price based decomposition
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
51185 2012 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 36, Issue 12, December 2012, Pages 5901–5919

ترجمه کلمات کلیدی
تولید TFT-LCD؛ برنامه ریزی ظرفیت؛ قیمت سایه موردانتظار ؛ برنامه نویسی تصادفی؛ الگوریتم تجزیه
کلمات کلیدی انگلیسی
TFT-LCD manufacturing; Capacity planning; Expected shadow price; Stochastic programming; Decomposition algorithm
پیش نمایش مقاله
پیش نمایش مقاله  تصادفی چند سایت برنامه ریزی ظرفیت تولید TFT-LCD با استفاده از تجزیه مبتنی بر قیمت سایه موردانتظار

چکیده انگلیسی

This paper presents a stochastic optimization model and efficient decomposition algorithm for multi-site capacity planning under the uncertainty of the TFT-LCD industry. The objective of the stochastic capacity planning is to determine a robust capacity allocation and expansion policy hedged against demand uncertainties because the demand forecasts faced by TFT-LCD manufacturers are usually inaccurate and vary rapidly over time. A two-stage scenario-based stochastic mixed integer programming model that extends the deterministic multi-site capacity planning model proposed by Chen et al. (2010) [1] is developed to discuss the multi-site capacity planning problem in the face of uncertain demands. In addition a three-step methodology is proposed to generate discrete demand scenarios within the stochastic optimization model by approximating the stochastic continuous demand process fitted from the historical data. An expected shadow-price based decomposition, a novel algorithm for the stage decomposition approach, is developed to obtain a near-optimal solution efficiently through iterative procedures and parallel computing. Preliminary computational study shows that the proposed decomposition algorithm successfully addresses the large-scale stochastic capacity planning model in terms of solution quality and computation time. The proposed algorithm also outperforms the plain use of the CPLEX MIP solver as the problem size becomes larger and the number of demand scenarios increases.