دانلود مقاله ISI انگلیسی شماره 51426
ترجمه فارسی عنوان مقاله

مدل تخصیص ریسک مطلوب در پروژه های PPP با استفاده از شبکه های عصبی مصنوعی

عنوان انگلیسی
Modelling optimal risk allocation in PPP projects using artificial neural networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
51426 2011 13 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Project Management, Volume 29, Issue 5, July 2011, Pages 591–603

ترجمه کلمات کلیدی
تخصیص ریسک، اقتصاد هزینه مبادله؛ شبکه های عصبی مصنوعی؛ PPP / PFI - استرالیا
کلمات کلیدی انگلیسی
Risk allocation; Transaction cost economics; Artificial neural networks; PPP/PFI; Australia
پیش نمایش مقاله
پیش نمایش مقاله  مدل تخصیص ریسک مطلوب در پروژه های PPP با استفاده از شبکه های عصبی مصنوعی

چکیده انگلیسی

This paper aims to establish, train, validate, and test artificial neural network (ANN) models for modelling risk allocation decision-making process in public–private partnership (PPP) projects, mainly drawing upon transaction cost economics. An industry-wide questionnaire survey was conducted to examine the risk allocation practice in PPP projects and collect the data for training the ANN models. The training and evaluation results, when compared with those of using traditional MLR modelling technique, show that the ANN models are satisfactory for modelling risk allocation decision-making process. The empirical evidence further verifies that it is appropriate to utilize transaction cost economics to interpret risk allocation decision-making process. It is recommended that, in addition to partners' risk management mechanism maturity level, decision-makers, both from public and private sectors, should also seriously consider influential factors including partner's risk management routines, partners' cooperation history, partners' risk management commitment, and risk management environmental uncertainty. All these factors influence the formation of optimal risk allocation strategies, either by their individual or interacting effects.