دانلود مقاله ISI انگلیسی شماره 85228
ترجمه فارسی عنوان مقاله

حداکثر کردن تاثیر با افزایش مجدد و موازی با رتبه بندی ردگیری تصادفی و برش ادغام رتبه

عنوان انگلیسی
Scalable and parallelizable influence maximization with Random Walk Ranking and Rank Merge Pruning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
85228 2017 41 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 415–416, November 2017, Pages 171-189

ترجمه کلمات کلیدی
حداکثر سازی تاثیر، شبکه های اجتماعی، پردازش موازی،
کلمات کلیدی انگلیسی
Influence maximization; Social networks; Parallel processing;
ترجمه چکیده
در این مقاله، ما یک روش هرس موثر برای مسئله به حداکثر رساندن بر اساس راه رفتن تصادفی و ادغام رتبه پیشنهاد می کنیم. ایده کلیدی این است که به طور موثری گره های غیر قابل نفوذ را پیدا کرده و از آنها جدا کنید تا به طور چشمگیری میزان محاسبه را برای ارزیابی گسترش نفوذ کاهش دهید. نتایج تجربی ما نشان دهنده کارآیی روش پیشنهاد شده در مقایسه با روش های قبلی پیشرفته است. علاوه بر این، روش ما به راحتی قابل تنظیم می باشد، و در نتیجه سرعت بیشتری می گیرد.
پیش نمایش مقاله
پیش نمایش مقاله  حداکثر کردن تاثیر با افزایش مجدد و موازی با رتبه بندی ردگیری تصادفی و برش ادغام رتبه

چکیده انگلیسی

In this paper, we propose an effective pruning method for the influence maximization problem based on Random Walk and Rank Merge. The key idea is to efficiently find and prune out uninfluential nodes in order to dramatically reduce the amount of computation for evaluating influence spread. Our experimental results demonstrate the efficiency of the proposed method compared to previous state-of-the-art methods. Additionally, our method is easily parallelizable, resulting in further speed up.