دانلود مقاله ISI انگلیسی شماره 40495
ترجمه فارسی عنوان مقاله

استفاده از وب و استخراج محتوای جهت استخراج دانش برای مدل سازی استفاده کنندگان سایت اینترنتی Bidasoa Turismo و انطباق آن

عنوان انگلیسی
Web usage and content mining to extract knowledge for modelling the users of the Bidasoa Turismo website and to adapt it
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
40495 2013 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 18, 15 December 2013, Pages 7478–7491

ترجمه کلمات کلیدی
وب سایت گردشگری Bidasoa - کاربرد کاوی وب - وب کاوی محتوا - وب پروفایل کاربران - خوشه - مدل سازی موضوع
کلمات کلیدی انگلیسی
Bidasoa tourism website; Web usage mining; Web content mining; Web user profiling; Clustering; Frequent pattern mining; Topic modelling
پیش نمایش مقاله
پیش نمایش مقاله  استفاده از وب و استخراج محتوای جهت استخراج دانش برای مدل سازی استفاده کنندگان سایت اینترنتی Bidasoa Turismo و انطباق آن

چکیده انگلیسی

The tourism industry has experienced a shift from offline to online travellers and this has made the use of intelligent systems in the tourism sector crucial. These information systems should provide tourism consumers and service providers with the most relevant information, more decision support, greater mobility and the most enjoyable travel experiences. As a consequence, Destination Marketing Organizations (DMOs) not only have to respond by adopting new technologies, but also by interpreting and using the knowledge created by the use of these techniques. This work presents the design of a general and non-invasive web mining system, built using the minimum information stored in a web server (the content of the website and the information from the log files stored in Common Log Format (CLF)) and its application to the Bidasoa Turismo (BTw) website. The proposed system combines web usage and content mining techniques with the three following main objectives: generating user navigation profiles to be used for link prediction; enriching the profiles with semantic information to diversify them, which provides the DMO with a tool to introduce links that will match the users taste; and moreover, obtaining global and language-dependent user interest profiles, which provides the DMO staff with important information for future web designs, and allows them to design future marketing campaigns for specific targets. The system performed successfully, obtaining profiles which fit in more than 60% of cases with the real user navigation sequences and in more than 90% of cases with the user interests. Moreover the automatically extracted semantic structure of the website and the interest profiles were validated by the BTw DMO staff, who found the knowledge provided to be very useful for the future.