دانلود مقاله ISI انگلیسی شماره 28460
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل رقابتی رسانه های اجتماعی و معدن متن: یک مطالعه موردی در صنعت پیتزا

عنوان انگلیسی
Social media competitive analysis and text mining: A case study in the pizza industry
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
28460 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Information Management, Volume 33, Issue 3, June 2013, Pages 464–472

ترجمه کلمات کلیدی
- رسانه های اجتماعی - فیس بوک - توییتر - مطالعه مورد - صنعت پیتزا - تجزیه و تحلیل رقابتی - هوش رقابتی - اطلاعات رقبا - هوش عملی - استخراج متن - تحلیل محتوا
کلمات کلیدی انگلیسی
Social media,Facebook,Twitter,Case study,Pizza industry,Competitive analysis,Competitive intelligence,Competitor intelligence,Actionable intelligence,Text mining,Content analysis
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل رقابتی رسانه های اجتماعی و معدن متن: یک مطالعه موردی در صنعت پیتزا

Social media have been adopted by many businesses. More and more companies are using social media tools such as Facebook and Twitter to provide various services and interact with customers. As a result, a large amount of user-generated content is freely available on social media sites. To increase competitive advantage and effectively assess the competitive environment of businesses, companies need to monitor and analyze not only the customer-generated content on their own social media sites, but also the textual information on their competitors’ social media sites. In an effort to help companies understand how to perform a social media competitive analysis and transform social media data into knowledge for decision makers and e-marketers, this paper describes an in-depth case study which applies text mining to analyze unstructured text content on Facebook and Twitter sites of the three largest pizza chains: Pizza Hut, Domino's Pizza and Papa John's Pizza. The results reveal the value of social media competitive analysis and the power of text mining as an effective technique to extract business value from the vast amount of available social media data. Recommendations are also provided to help companies develop their social media competitive analysis strategy.