دانلود مقاله ISI انگلیسی شماره 82626
ترجمه فارسی عنوان مقاله

قیمت گذاری مطلوب در تجارت الکترونیک بر اساس داده های کم و پر سر و صدا

عنوان انگلیسی
Optimal pricing in e-commerce based on sparse and noisy data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
82626 2018 37 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 106, February 2018, Pages 53-63

ترجمه کلمات کلیدی
قیمت گذاری پویا، تجارت الکترونیک، فراگیری ماشین، داده کاوی،
کلمات کلیدی انگلیسی
Dynamic pricing; E-commerce; Machine learning; Data mining;
پیش نمایش مقاله
پیش نمایش مقاله  قیمت گذاری مطلوب در تجارت الکترونیک بر اساس داده های کم و پر سر و صدا

چکیده انگلیسی

In today's transparent markets, e-commerce providers often have to adjust their prices within short time intervals, e.g., to take frequently changing prices of competitors into account. Automating this task of determining an “optimal” price (e.g., in terms of profit or revenue) with a learning-based approach can however be challenging. Often, only few data points are available, making it difficult to reliably detect the relationships between a given price and the resulting revenue or profit. In this paper, we propose a novel machine-learning based framework for estimating optimal prices under such constraints. The framework is generic in terms of the optimality criterion and can be customized in different ways. At its core, it implements a novel algorithm based on Bayesian inference combined with bootstrap-based confidence estimation and kernel regression. Simulation experiments show that our method is favorable over existing dynamic pricing strategies. Furthermore, the method led to a significant increase in profit and revenue in a real-world evaluation.