دانلود مقاله ISI انگلیسی شماره 85792
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل حساسیت زیرگرافی های توپولوژیکی در سیستم های توزیع آب

عنوان انگلیسی
Sensitivity Analysis of Topological Subgraphs within Water Distribution Systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
85792 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Procedia Engineering, Volume 186, 2017, Pages 252-260

ترجمه کلمات کلیدی
سیستم های توزیع آب تجزیه و تحلیل میزان حساسیت، جزئی توپولوژیک، معکوس ماتریس،
کلمات کلیدی انگلیسی
Water distribution systems; sensitivity analysis; topological minor; matrix inversion;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل حساسیت زیرگرافی های توپولوژیکی در سیستم های توزیع آب

چکیده انگلیسی

Sensitivity analysis of the actual hydraulic state of water distribution systems is a valuable tool with number of applications in hydraulic systems analysis. Sensitivity matrices include the information of the response of the hydraulic state variables (flows, pressures) to changes in model parameters (e.g. demands, roughness, control parameters) for a specific hydraulic state of the system. For calculation, there exists in addition to finite difference approximations also exact solutions that include the inversion of the system matrix (the Schur Complement of the Jacobian of the hydraulic network equations). In combination with hydraulic network simulations, the factorization (for example Cholesky matrix decomposition) of the matrix that has already been done by the hydraulic solver in the computation process can be used for the efficient calculation of the inverse matrix. However, for large realworld networks the sensitivity calculation is a time and memory consuming process because the inverse of the system matrix of a connected network has no zero elements. In this paper a new method is presented that allows for the exact calculation of sensitivities of a particular subgraph of interest, the topological minor or supergraph within a water distribution system network graph. Supernodes are the most important nodes in terms of connectivity redundancy within the network graph. Superlinks replace all pipes (links) in series between two supernodes. It will be shown that the sensitivities that are calculated for the subgraph deliver exactly the same results as the inversion of the entire system matrix reduced to supernodes. This paper focuses on the derivation of the equations for the reduced system matrix inversion of the topological subgraph. In addition, the paper includes the proof of equivalence of the matrix inverses for the topological minor subgraph. This inverse represents the fundamental sensitivities of nodal heads and pipe flows with respect to nodal demands in demand driven analysis. The results presented can be extended to other sensitivities, since the matrix inverse in question is included in all other derived parameter sensitivities.