دانلود مقاله ISI انگلیسی شماره 85789
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل مودال از شبکه های توزیع فعال با استفاده از تکنیک های شناسایی سیستم

عنوان انگلیسی
Modal analysis of active distribution networks using system identification techniques
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
85789 2018 14 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Electrical Power & Energy Systems, Volume 100, September 2018, Pages 365-378

ترجمه کلمات کلیدی
شبکه های توزیع فعال شناسایی حالت، دینامیک سیستم قدرت، تجزیه و تحلیل رکورد، نظارت پایداری،
کلمات کلیدی انگلیسی
Active distribution networks; Mode identification; Power system dynamics; Ringdown analysis; Stability monitoring;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل مودال از شبکه های توزیع فعال با استفاده از تکنیک های شناسایی سیستم

چکیده انگلیسی

Mode identification from post-disturbance “ringdown” responses can provide vital information concerning the dynamic performance and the stability margins of power systems. Therefore, several measurement-based identification techniques have been proposed in the literature to analyze ringdown responses of transmission systems and provide close to real-time estimation of the modal content. However, the applicability of these methods has not been thoroughly investigated for the analysis of active distribution networks (ADNs). Scope of this paper is to evaluate the applicability and the performance of eight measurement-based system identification techniques for the modal analysis of ADNs. The examined methods are used to identify the dominant oscillatory modes contained in ringdown responses of different types of signals. The Monte Carlo method is applied to investigate the influence of several parameters on the accuracy and efficiency of the identification procedure, while laboratory measurements are used to further demonstrate the accuracy of the examined methods. Practical issues encountered in the application of the identification techniques for the analysis of ADNs are discussed and potential solutions are proposed. Results reveal that although most of the examined techniques perform satisfactorily enough and thus can be readily employed for the modal analysis of ADNs, the Vector Fitting and the Hybrid FD/TD seem to be the most effective methods in terms of accuracy, robustness and computational efficiency.